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Executive Summary

Impedance matching is a canonical problem in electrical engineering. The
problem is to maximize power flowing from a generator to a load with an
adroit design of a matching network. Typically, matching problems use a
single-port load. In contrast, this report develops matching for a load with
multiple ports. The specific multiport load is a three-wire antenna. Each wire
has a feed port so that the load is a 3-port. The matching problem is to find
a matching network that maximizes power flow from a single feed to all three
ports across a wide frequency band (100–700 MHz). Unexpectedly, several
theoretical matching multiports were found that gave excellent wideband
performance. Consequently, this serendipitous result opens several directions
of opportunity.

One direction aims at enhancing the antenna’s wideband performance.
Understanding the physical phenomenon of coupling between the wires, the
physical geometry of the wires, and a Pareto theory for maximal bandwidth
and minimal size are all significant research topics. Another direction aims
at the matching networks because of the gaps in theory and practical design.
Specific and detailed formulation of these research opportunities is made
explicit in this report.
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1 Why Multiport Matching?

Impedance matching is a ubiquitous problem in electrical engineering. The
standard matching problem searches for a 2-port that maximizes the power
transfer from a generator to a load. Increasing bandwidth in communication
systems, the integration of many functions on a chip, and multifunction
antennas all lead to the problem of multiport matching. In general, when
a generator and a load are multiports, the connecting matching network
must also be a multiport.

Multiport matching assumes the ports of the load are coupled. Other-
wise, uncoupled ports reduces matching to a collection of standard 2-port
matching problems. A multiport antenna provides a splendid case study.
When antenna arrays are spaced closer than half a wavelength (λ/2), mutual
coupling effects emerge [38]:

When using multiple antenna elements for diversity implemen-
tation on small personal communications devices, the resulting
closely spaced antenna elements exhibit the well-known mutual
coupling . . . [that] alters both their terminal impedance and ra-
diation pattern characteristics. These changes obviously impact
the diversity performance of the multiantenna system.

A powerful design approach is the emerging port decoupling [9]:

[port decoupling] involves a modal feed network which makes use
of the orthogonality of the eigenmodes of the array to achieve
decoupling. The input ports to the feed network and array com-
bination can then be matched independently.

Figure 1 illustrates this decoupling and single-channel matching approach.
Figure 2 shows a 6-port matching circuit where the decoupling and matching
have been merged into a nicely interconnected multiport. Figure 3 shows
a matching problem where a 3-port antenna is powered by a single feed.
The 4-port matching networks will exploit the mutual coupling to attain a
wideband antenna.
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Figure 1: Matching and decoupling schematic [37] c© IEEE 2008.

Figure 2: 6-port decoupling and matching [41] c© IEEE 2006.

Figure 3: 4-port matching with a single feed at Port 1.
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Section 3 describes the three-wire antenna, the three feed points, and the
computation of its 3× 3 admittance matrix over 100–700 MHz. This admit-
tance matrix shows the resonances of the wires and the coupling between the
wires.

Section 4 starts the matching process by directly connecting the three feed
points to a common terminal. Thus, the three-wire antenna is turned into a
standard single-port antenna amenable to 2-port matching. Unfortunately,
this direct connection has a terrible Voltage Standing Wave Ratio (VSWR)
over 100–700 MHz. The smallest VSWR attainable by any matching 2-
port—regardless of the number of components and topology—exceeds 22.
Only 17% of the power is delivered to the antenna—the remaining 83% is
reflected back to the feed. Multiport matching improves this power delivery.

Section 5 matches of the three-wire antenna over the class of 4-ports
shown in Figure 3. The matching results are excellent: the VSWR is less
than 2.7 over 140–700 MHz. This multiport matching network delivers 79%
of power to the antenna; only 21% is reflected back to the feed. This im-
provement of this wide-band VSWR motivated this exploration of multiport
matching.

Section 6 straddles the preceding matching topologies by matching with
a “channelized” 4-port—each port of the antenna is connected to its own
matching 2-port. The preliminary results show that this “semi-direct” con-
nection is not as viable, and the cross-coupling in the full multiport is neces-
sary for a wideband match. This observation again raises questions regarding
a physical understanding of multiport matching. Section 7 organizes these
results into a collection of research topics:

• Developing H∞ bounds to compute absolute matching performance

• Extracting a circuit from the general multiports

• Considering ladder-like multiport topologies

• Understanding the role of coupling and matching

• Other multiport matching applications

Appendix A offers an in-depth description of the resonances of the three-
wire using characteristic modes. Appendix B reviews the necessary back-
ground on the lumped, lossless multiports used for matching.
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2 Notation

Table 1 lists common notation. The last three entries are the scattering,
impedance, and admittance matrices. The implicit assumptions when using
these matrices is the existence and linear relationship of the currents and
voltages [28]. For example, the admittance matrix Y of a three-port links
the current and voltage vectors as




i1
i2
i3


 =




y11 y12 y13

y21 y22 y23

y31 y32 y33







v1

v2

v3


 .

Table 1: Notation.

symbol Description

R Real numbers
C complex plane
C+ open right half complex plane
j positive square root of -1
p complex frequency: p = σ + jω
σ neper frequency (nepers per second)
ω radial frequency (radians per second)
IN N ×N identity matrix
S scattering matrix (unitless)
Y admittance matrix (Siemens)
Z impedance matrix (ohms)

Figure 4 illustrates the cascade of a 2-port with scattering matrix

S =

[
s11 s12

s21 s22

]

with Port 2 terminated in a load with reflectance sL. The reflectance s1

looking into Port 1 is

s1 = F(S, sL) := s11 + s12sL(1 − s22sL)−1s21.
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When the dependence on the complex frequency p must be made explicit,
the notation takes the form

s1(p) = F(S, sL; p)

:= s11(p) + s12(p)sL(p)(1 − s22(p)sL(p))−1s21(p).

Figure 4: Cascade of a 2-port and load.

Let a multiport have a scattering matrix with a block structure

S =

[
S11 S12

S21 S22

]
.

Let S11 be an M × M scattering matrix that corresponds to Ports 1, 2 . . . ,
M . Let S22 be an N×N scattering matrix that corresponds to the remaining
N ports. If these remaining N ports are terminated in an N -port load with
scattering matrix SL, the scattering matrix looking into Ports 1, 2, . . . , M is

F(S, SL) := S11 + S12SL(IN − S22SL)−1S21,

where IN denotes the N × N identity matrix.
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3 The Three-Wire Antenna

An arbitrary three-wire antenna was chosen to investigate the value of mul-
tiport matching. Figure 5 shows that the antenna consists of three closely
spaced center-fed vertical dipoles operating over 100–700 MHz.

Figure 5: Center-fed dipoles.

The dipole lengths and resonant frequencies are listed in Table 2. Com-
paring the wavelengths to the antenna distances justifies “closely spaced” as
a descriptor.

Table 2: Dipole specifications (meters).

Wire x y Length

1 0.00 0.00 0.50
2 0.05 0.00 0.25
3 0.00 0.05 1.00

The admittance matrix of this three-wire antenna provides insight into its
multiport response. Specifically, the admittance matrix shows the resonant
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and mutual coupling frequencies. It suffices to define1 these frequencies from
the local maxima of admittance’s magnitude. The admittance matrix relates
the feed-point voltages to the feed-point currents measured at Ports 1, 2, and
3 of Figure 5: 


i1
i2
i3


 =




y11 y12 y13

y21 y22 y23

y31 y32 y33







v1

v2

v3


 .

The feed point admittance were calculated using Version 14 of the Expert
MININEC Broadcast Professional [32]. This software is an advanced engi-
neering tool for the design and analysis of wire antennas. The wire antennas
are assumed to be a collection of arbitrary thin, straight wires in free space or
over a ground plane. A method of moments algorithm solves for the current
distribution on the wires. The solution for current distribution is based on
the numerical solution of an integral equation representation of the electric
fields [33]. The process of solution begins with thin-wire assumptions [36]:

W-1 Antennas must be modeled as a group of one or more straight wires.

W-2 The wire radius is very small with respect to the wire length.

W-3 Parallel wires should be several wire diameters or more apart.

W-4 The radius is very small with respect to segment lengths.

Table 3 tabulates the dipole’s lengths, radii, and segment lengths. Compared
to the wavelength λ = 0.43 meters at 700 MHz, this antenna model is within
MININEC assumptions W-1, W-2, W-3, and W-4.

Table 3: MININEC wire models (millimeters).

Wire Length Radius Segment Separation
1 500 1 25 50
2 250 1 25 50
3 1,000 1 25 50

1Subsequent reports will include a multiport generalization of resonance and anti-
resonance defined on the Smith chart.
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The electric field is determined by the vector magnetic potential and the
scalar electric potential. The two potentials are calculated from potential
integrals that are solutions of the Helmholtz vector and scalar wave equa-
tions. The integrands of the potential integrals are the wire current and
wire charge distributions. Because wires are thin, the currents are axially
directed (i.e., no circumferential currents on the wires). The current and
charge are linked by the equation of continuity. Expert MININEC Broadcast
Professional assumes the following boundary condition:

TE-0 The tangential electric field at the surface of a perfect conductor is
zero.

Because the wires are assumed to be thin, this assumption forces the total
axial electric field on the wire to zero. The three sources of the tangential
electric field on the wire are:

TE-1 currents and charges on the wires and on nearby wires,

TE-2 incoming waves from distance or nearby radiators,

TE-3 local sources of electric field on the wire.

The local sources are voltage sources or current sources that connect to the
wires. By summing the tangential electric field components at each segment
on the wire antenna and enforcing the zero total value, an integral represen-
tation for the currents and charges is obtained.

The electric field integral equation is solved in Expert MININEC Broad-
cast Professional by the method of moments. Basis functions are chosen to
represent the unknown currents (i.e., triangular basis functions). Testing
functions are chosen to enforce the integral equation on the surface of the
wires. These basis and testing functions yield a matrix approximation of
the integral equations. If this matrix is inverted and multiplied by the local
sources of electric field, the complex magnitudes of the current basis func-
tions are derived. All antenna performance parameters can be determined
from the derived current distribution, including the feed point admittance.

Figure 6 plots the admittance matrix as a function of frequency. Each
(m,n) subplot plots the magnitude of its corresponding normalized admit-
tance |ym,n|. The antenna resonances are prominent features of the port ad-
mittances y1,1, y2,2, and y3,3 along the main diagonal: The 0.5-meter dipole
has |y1,1| showing a peak near 300 MHz. The 0.25-meter dipole has |y2,2|

8



peaking near 600 MHz. The 1-meter dipole has |y3,3| peaking near 150 MHz
and 450 MHz.

Figure 6: Admittance matrix—normalized magnitudes.

The plot also shows both the coupling and reciprocity (Y = Y T ) between
the dipoles. For example, the voltage v1 across Port 1 to 0.5-meter dipole
also produces currents from Port 2 (the 0.25-meter dipole) at 600 MHz and
Port 3 (the 1-meter dipole) at 300 MHz. Likewise, voltage v2 across Port 2 to
the 0.25-meter dipole produces currents from Port 1 (the 0.5-meter dipole)
and Port 3 (the 1-meter dipole) at 600 MHz. Finally, the voltage v3 across
Port 3 feeds to the 1-meter dipole currents from Port 1 at 300 MHz and in
Port 2 at 600 MHz. Consequently, the admittance plot does reveal some of
the resonances and mutual couplings.

Figure 7 plots the scattering matrix the three-wire antenna as a function
of frequency f . For f < 200 MHz, the reflectances are plotted in black.
For f > 200 MHz, the reflectances are plotted in blue. The Smith chart
reveals the resonances of the input ports: A resonant frequency ω× is defined
where s(jω×) crosses the real axis in the upward direction. An anti-resonant

9



frequency ω⊗ is defined where s(jω⊗) crosses the real axis in the downward
direction [43]. For example, s3,3(jω) explains that two large spikes at 150
and 450 MHz in the admittance plot are resonant frequencies while the spike
at 300 MHz is an anti-resonant frequency.

Figure 7: Scattering Matrix.

Finally, because this scattering matrix is the “object under discussion,”
the limitations of the antenna model are made explicit. First, the limitations
of MININEC are recognized [36] and a convergence study was not performed
[33]. Second, the dipole’s lengths were chosen for convenience. A more
judicious choice of dipole lengths will produce more resonances in 100–700
MHz. Third, the sensitivity of this antenna to physical perturbations has
not been studied. Nevertheless, the wavelength and the physical dimensions
argue that this three-wire antenna is “good enough” as a multiport matching
exemplar.
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4 The Direct Connection

This section starts the matching process using the direct connection as a
baseline case. Figure 8 is a schematic of the direct connection. The green
box is the matching 4-port that simply wires all three ports of the antenna
to the single feed.

Figure 8: 4-port matching; direct connection.

This direct connection converts the 3-port antenna into a 1-port antenna
amenable to standard matching as shown in Figure 9. Consequently, the
performance obtained by matching this direct connection benchmarks the
performance attained by the multiport matching networks.

Figure 9: 2-port matching of the direct connection.

Figure 10 plots the transducer power gain of the direct connection:

GT (jω) = 1 − |s1(jω)|2,

where s1(jω) is the reflectance looking into the feed to the antenna. In
addition to the expected resonances near 150, 300, and 600 MHz, a resonance
exists near 450 MHz. Appendix A shows that this resonance is on the long
wire. Figure 11 plots the reflectance of the direct connection on the Smith
chart. The number and location of these loops near the boundary of the
Smith chart indicate that matching is difficult.
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Figure 10: Transducer power gain of the direct connection.

Figure 11: Smith chart of the direct connection.
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Figure 12 shows the difficulty of matching the direct connection. The
plot shows the matching performance of various classes of 2-ports connecting
the feed point to a generator as shown in Figure 9. The vertical axis is
the VSWR. The horizonal axis is the degree d of the matching 2-port and
is equivalent to the number of lumped elements in the 2-port. The curve
labeled “low-pass ladders” plots the VSWR as a function of the number of
elements and attains a VSWR in excess of 25. The solid patch marks the H∞

bound—the smallest VSWR attainable by any lossless 2-port. This VSWR
exceeds 22 so that this direct connection is useless. Between these two plots
lies the “state-space” curves. This curve plots the matching performance
available from all lumped, lossless 2-ports of degree d. This matching class
is reviewed in Appendix B and is the basis for the multiport matching in the
next section.

Figure 12: Matching the direct connection.

13



5 Multiport Matching

Figure 13 is a schematic showing the voltages, currents, and incident and
reflected waves of a 3-port.

Figure 13: Scattering waves for a 3-port.

The incident wave [4, Eq. 4.25a], [5, page 234]

a =
1

2
{R−1/2

0 v + R
1/2
0 i}

and the reflected wave [4, Eq. 4.25b], [5, page 234]

b =
1

2
{R−1/2

0 v− R
1/2
0 i}

are defined with respect to the normalizing2 matrix

R0 =




r0,1 0 0
0 r0,2 0
0 0 r0,3


 .

2Two accessible books on the scattering formalism are Baher [4] and Balabanian &
Bickhart [5]. Baher omits the factor of 1/2 but carries this rescaling into the power defi-
nitions. Most other books use the power-wave normalization [14]: a = R

−1/2
0 {v + Z0i}/2,

where the normalizing matrix Z0 = R0 + jX0 is diagonal with diagonal resistance R0 > 0
and reactance X0.
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This document always normalizes with respect to r0 = 50 ohms:

R0 = r0




1 0 0
0 1 0
0 0 1


 = r0I3.

The scattering matrix SL(p) maps the incident signal a(p) to the reflected
signal b(p):

b =




b1

b2

b3


 =




s11 s12 s13

s21 s22 s23

s31 s32 s33







a1

a2

a3


 = SLa.

The complex power3 delivered to the 3-port is [5, page 241]:

W (p) := v(p)H i(p).

The average power delivered to the 3-port is [18, page 19], [25]:

PL :=
1

2
<[W ] =

1

2
{aHa − bHb} =

1

2
aH{I − SH

L SL}a. (1)

The matrix I−SH
L SL is called the dissipation matrix [10] or the radiation ma-

trix [37]. The latter name is misleading because it implies that the power PL

that is delivered to the antenna is actually radiated. The eigen-decomposition
of this matrix, which is equivalent to the eigen-decomposition of the scat-
tering matrix SL, is basic to matching [37]. If the 3-port consumes power
(PL ≥ 0) for all its voltage and current pairs, the N -port is said to be passive.
Because v(p) is the Fourier transform of the voltage vector V(t):

v(p) =

∫ ∞

−∞
e−j2πptV(t)dt,

v(p) has units V/Hz. Likewise, i(p) has units A/Hz, so that W (p) units of
W/Hz2. In comparison, both the incident wave a and the reflected wave b
have units of

√
W/Hz so that it makes sense to call

Pa = aHa

3Baher uses [4, Eq. 2.17]: W (p) = i(p)Hv(p). Gonzalez [18] power definitions require
a “1/2”.
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the incident power and
Pb = bHb

the reflected power, respectively [5, page 227]. Optimal feed schemes are
those that minimize the reflected power:

min{Pb(a) : Pa = 1}.

Equivalently, these optimal feed schemes are also solutions to the matrix
norm problem:

‖I − SH
L SL‖ = max{aH(I − SH

L SL)a : ‖a‖ = 1}.

The physical interpretation of this feed scheme is that it maximizes the power
delivered to the antenna subject to the constraint of unit incident power [37].
Figure 14 plots the norm of the dissipation matrix as a function of frequency.

Figure 14: Unmatched Gain.
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The matching network should map the generator’s power to an output
power that will be more useful at the load. The modification of power is
generically called “gain.” The matching problem requires gain computations,
and we need the maximum power and mismatch definitions. The maximum
power available from a generator is defined as the average power delivered
by the generator to a conjugately matched load [18, Eq. 2.6.7]:

PG,max := PG|s1=sG
=

|cG|2

2
(1 − |sG|2)−1.

The transducer power gain is [18, page 213]:

GT :=
PL

PG,max
=

power delivered to the load

maximum power available from the generator
.

Lemma 1 Figure 15 is a schematic of a 4-port that matches a generator
looking into Port 1 to a 3-port load terminating Ports 2, 3, and 4.

Figure 15: Matching 4 port.

The reflectance looking into Port 1 is

s1 = s11 + S12SL(I3 − S22SL)−1S21.

The transducer power gain is

GT =
1 − |sG|2

|1 − sGs1|2
SH

21(I3 − S22SL)−H(I3 − SH
L SL)(I3 − S22SL)−1S21. (2)

17



Proof: The first task is to link the power PL delivered to the 3-port load
(Equation 1) to the input a1. The 4-port scattering equations and the load
reflectance are:

[
b1

b2

]
=

[
s11 S12

S21 S22

] [
a1

a2

]
; SLb2 = a2.

Eliminate a2 from the lower equation:

b2 = (I3 − S22SL)−1S21a1.

The power PL delivered to the 3-port load is

PL =
1

2
a1S

H
21(I3 − S22SL)−H(I3 − SH

L SL)(I3 − S22SL)−1S21a1.

A corresponding symmetry of the power relations exists at the input port.
The reflectances at Port 1 and the generator are

b1 = s1a1; a1 = sGb1 + cG.

Eliminate b1 from the generator’s equation:

(1 − sGs1)a1 = cG.

Substitute into the power PL to the load:

PL =
1

2

|cG|2

|1 − sGs1|2
SH

21(I3 − S22SL)−H(I3 − SH
L SL)(I3 − S22SL)−1S21.

Dividing by the maximum gain available from the generator gives the result.
///

Lemma 1 is a simple algebraic statement that holds regardless of the
passivity of the matching 4-port or the 3-port load. All that is required
is that the inverses exist. A substantial simplification is possible when the
matching 4-port is lossless.
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Corollary 1 Assume the schematic of Figure 15. Assume the 4-port is loss-
less:

SHS = I4.

Assume the load SL(p) is strictly passive:

SH
L SL < I3.

Assume the reflectance of the generator is zero:

sG = 0.

The transducer power gain is

GT = 1 − |s1|2. (3)

The smallest transducer power gain over a frequency band Ω is denoted

‖GT (sG, S, SL)‖−∞,Ω := min{GT (sG, S, SL; jω) : ω ∈ Ω},

where the dependence on the generator’s reflectance sG(p), the matching 4-
port S(p), and the load SL(p) is made explicit. The generator’s reflectance
sG(p) and the load SL(p) are fixed. The collection of matching 4-ports speci-
fied by the circuit designer is called the designable part and denoted S. The
Single-Input Multiple-Output (SIMO) matching problem is to find lossless
multiports from S that maximize the transducer power gain GT over a fre-
quency band Ω. Generalizing this SIMO matching problem for an N -port
load is straightforward:

SIMO Matching: Given the generator’s reflectance sG,
an N -port load SL(p) and a class S of lossless (N + 1)-
ports, maximize the transducer power gain:

sup{‖GT (sG, S, SL)‖Ω,−∞ : S ∈ S}.

A general matching class consists of all the lumped, lossless N -ports of
degree d. This class is denoted by U+(N, d) and described in detail in Ap-
pendix B. Physically, U+(N, d) represents all the N -ports that can be synthe-
sized with at most d lumped elements—inductors and capacitors—connected
only by wires, transformers, and gyrators.
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Mathematically, U+(N, d) consists of all N ×N scattering matrices S(p)
that are rational functions analytic and bounded on the open right half of
the complex plane, real on the real axis,

S(p) = S(p),

unitary on the imaginary axis

S(jω)HS(jω) = IN ,

and have Smith-McMillan degree

degSM[S(p)] ≤ d.

Figures 16, 17 18, 19, 20, and 21 match the 3-port antenna from U+(4, d).
The optimization problem is the SIMO Matching:

sup{‖GT (sG, S, SL)‖Ω,−∞ : S ∈ U+(4, d)}.

Figure 16 plots the 4-port matching over the full frequency band 100–700
MHz. The blue curve plots the unmatched gain from Figure 14. The green
curve plots the gain obtained by matching over U+(4, d) when d = 4. The
transducer power gain is improved from -14 dB to -3 dB but the poor response
of the antenna near 100 MHz limits the performance. Figure 17 verifies this
statement by matching from the d = 4 multiports but limiting the frequency
band to 140–700 MHz. Excellent matching performance is obtained with
the nearly flat gain function. This “flatness” of the gain at optimum is
characteristic of H∞ theory.

Conjecture: SIMO matching solutions are characterized by flat
gain as d → ∞.

Figure 18 shows that matching with d = 3 still has a nearly flat response
to support the conjecture. Figures 19, 20, and 21 match with d = 2, 1, 0
with only a 0.6-dB decrease in performance. However, at these suboptimial
solutions, an “equal-ripple” is emerging.

Conjecture: SIMO matching solutions are characterized by an
“equal-ripple” gain for d < ∞ .
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Figure 16: d = 4 matching over 100–700 MHz.

Figure 17: d = 4 matching over 140–700 MHz.
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Figure 18: d = 3 matching over 140–700 MHz.

Figure 19: d = 2 matching over 140–700 MHz.
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Figure 20: d = 1 matching over 140–700 MHz.

Figure 21: d = 0 matching over 140–700 MHz.
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Table 4 tabulates the matching performance as a function of degree. The
rolling off of the matching with increasing degree and the flatness of the gain
support the conjecture that -1 dB is a reasonable matching bound. Indeed,
it is the flatness of the gain that is characteristic of the H∞ theory [21].
This flat gain leads to the excellent research question: How much of the H∞

theory carries over to the SIMO matching problem?

Table 4: Matching with U+(4, d) over 140–700 MHz.

d Gain (dB) VSWR

0 -1.582 3.4696
1 -1.453 3.2849
2 -1.368 3.1651
3 -1.025 2.6935
4 -1.033 2.7043

What is also intriguing about Table 4 is that the greatest improvement
in matching is obtained by the non-reactive 4-port for d = 0. The associated
scattering matrix is

S =




0.5748 −0.1638 −0.3528 −0.7199
0.4973 0.8192 0.2754 0.0757
0.4024 −0.5057 0.7604 0.0637
0.5103 −0.2150 −0.4706 0.6870


 .

This scattering matrix is not reciprocal but exhibits a non-zero gyrator rank
discussed in Appendix B:

2 = g[S] =
1

2
rank(S − ST ).

That is, a non-reactive 4-port must contain at least 2 gyrators. Therefore,
an excellent research question asks: What multiport matching is possible with
reciprocal (gyrator-free) multiports?
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6 Channelized Multiports

The excellent matching obtained by the general multiports U+(4, d) raises
an interesting question: are these multiports masking the simpler matching
topology of channelized 2-ports? Figure 22 is a schematic of the channelized
2-ports.

Figure 22: Matching with channelized 2-ports.

The matching 4-port is obtained as the compression of a 6-port. Figure 23
is a schematic of the 6-port that ties Ports 1, 3, and 5 together.

Figure 23: Simple channelized 2-ports.

The 6-port has admittance matrix

YA ⊕ YB ⊕ YC =




yA,11 yA,12 0 0 0 0
yA,21 yA,22 0 0 0 0

0 0 yB,11 yB,12 0 0
0 0 yB,21 yB,22 0 0
0 0 0 0 yC,11 yC,12

0 0 0 0 yC,21 yC,22




.
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Using the labeling in Figure 23, the current vector for the 4-port is the
compression of the current vector for the 6-port:




i1
i2
i3
i4


 =




1 0 1 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1







iA
i2
iB
i4
iC
i6




.

Let E denote the transpose of this compression matrix for the current vectors.
Matrix E is the expansion matrix for the voltage vectors:




vA

v2

vB

v4

vC

v6




=




1 0 0 0
0 1 0 0
1 0 0 0
0 0 1 0
1 0 0 0
0 0 0 1







v1

v2

v3

v4


 .

The admittance matrix Y for the 4-port is the full 6-port admittance matrix
multiplied on the left by the current compression matrix and on the right by
the voltage expansion matrix:

Y = ET {YA ⊕ YB ⊕ YC}E

=




yA,11 + yB,11 + yC,11 yA,12 yB,12 yC,12

yA,21 yA,22 0 0
yB,21 0 yB,22 0
yC,21 0 0 yC,22


 .
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The preliminary results matching with this channelized multiport are
negative but intriguing. Figure 24 displays the matching that shunt inductors
obtained over 140–700 MHz. The blue line is the gain of the direct connection.
The green line is the gain achieved by the channelized matching circuit.
Although the deep null between 140 and 300 MHz is filled, the antenna is
still poorly matched.

Figure 24: Channelized 2-ports (shunt inductance)

Searching over several classes of lumped ladders for better performance
was fruitless. This empty search offers two lessons. First, time and effort
can be wasted without good matching bounds. Such bounds can show a
design is simply not feasible and a fruitless search is avoided. Second, the
non-reactive matching obtained by the degree d = 0 multiports shows that
simply throwing lots of lumped elements at the problem is futile—if only
channelized matching is used. Rather, some cross coupling must be present.
Accordingly, the topology was slightly generalized.
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Figure 25 shows a power trivider consisting of channelized 2-ports with
admittance matrices YB, YC , and YD that all terminate in a common 2-port
with admittance matrix YA.

Figure 25: Power trivider.

For matching, the 2-ports are ideal transmission lines. A uniform, lossless
transmission line of characteristic impedance zc and commensurate length `
is called a unit element (UE) and has a chain matrix [4, Eq. 8.1]

TUE(p) =

[
cosh(τp) zc sinh(τp)
yc sinh(τp) cosh(τp)

]
,

where τ = c−1` is the commensurate one-way delay determined by the speed
of propagation c. Figure 26 shows that this transmission-line topology does
slightly better than no matching. The blue line is the gain of the unmatched
gain of Figure 14. The green line is the gain provided by the matching circuit.
The box lists the impedances zc’s in ohms and the length in millimeters.

Just as in the multiport matching of Section 5, better performance is
obtained by reducing the frequency range. Figure 27 shows pulls in both
the high and low ends to obtain a 3.1 VSWR over 300–600 MHz. The high
performance obtained at the 600 MHz suggests that the high-frequency range
can be extended with a small increase in the VSWR. Likewise, the increasing
gain at the low end also suggests that the peak just below 300 MHz can also
be exploited.
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Figure 26: Power trivider matching 140–700 MHz.

Figure 27: Power trivider matching 300–600 MHz.
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Figure 28 verifies the observations of the preceding plots by extending the
matching over 270–700 MHz. The VSWR increases from 3.1 to 3.5. What
this example does show is that an explicit matching 4-port can deliver some
performance. Nevertheless, this approach is still incremental in the sense
that cross coupling is not designed into this topology.

Figure 28: Power trivider matching 270–700 MHz.
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7 Exploiting Multiport Coupling

This multiport antenna is an excellent demonstration of the design potential
of multiport matching. Exploiting this “lucky hit” has immediate payoffs
for theory, multiport design, and optimization. Rather than list a series of
“research directions” that constrain cogitation, the following questions are
offered in the spirit of using this remarkable multiport matching result for
several points-of-departure.

7.1 What are the theoretical limits of multiport match-

ing?

This general question can be focused to ask: Given a multiport load, can
the H∞ bounds or the Fano bounds be computed for the SIMO matching
problem? Answering either theoretical question has an immediate practical
payoff because unworkable designs can be eliminated without wasting time
on fruitless searches [29].

The Fano bounds are basic to single-port matching. A multiport gener-
alization was obtained in 1984 by Wang and Chen [40]. Since then, the Fano
literature shows limited development for multiports and is still restricted to
rational-function models.

The H∞ bounds are basic to optimization over analytic functions, or
equivalently, to matching circuits. Characteristic of the H∞ bounds is the
“flatness” of the objective function at a local optima: Helton observed
that the flatness and the winding number characterize local optima
[21, Theorem 9.3.1]. In this context, the observed flatness in Figure 17
provides graphical evidence of a theoretically optimal match.

Further consideration of the SIMO question also reveals new approaches
to constrained H∞ optimization. Section 5 sets out the SIMO matching
problem for N -port loads SL as

sup{‖GT (sG, S, SL)‖Ω,−∞ : S ∈ S},

where S is the class of designable (N + 1)-ports. If the circuit designer is
searching for optimal matching from lumped, lossless multiports of degree
not exceeding d, the set inclusion

S ⊆ U+(N + 1, d),
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implies the inequality:

sup{‖GT (sG, S, SL)‖Ω,−∞ : S ∈ S}
≤ sup{‖GT (sG, S, SL)‖Ω,−∞ : S ∈ U+(N + 1, d)}.

Because U+(N +1, d) is a subset of H∞, several H∞ techniques can com-
pute upper bounds on this gain. One upper bound follows from maximizing
the gain for over the unit ball in H∞:

H∞ SIMO Matching: Given the generator’s reflectance
sG and an N -port load SL(p), maximize the transducer
power gain

maximize: ‖GT (sG, S, SL)‖Ω,−∞,

where S is an H∞ function of norm ‖S‖∞ ≤ 1.

Helton solved this multiport matching problem in his 1981 paper [20,
Test IV]. Helton’s multiobjective optimization program can also solve this
problem [22]. The idea is to compute the Pareto front constructed of the
gain and multiport norm. This Pareto front subsumes the preceding H∞

SIMO matching as a special case. Consequently, comparing both methods
applied to multiport matching is an excellent research topic.

More attuned to Lagrange multipliers is the following constrained opti-
mization problem:

maximize: ‖GT (sG, S, SL)‖Ω,−∞

subject to the constraints that S is an H∞ function of unit norm:

‖I − SHS‖∞ = 1.

A reasonable conjecture is that the gradient alignment conditions of the
Lagrange multipliers have an analog in H∞ optimization. Regardless of the
methods, computing best possible bounds for multiport matching provides a
fundamental benchmark to assess practical design. However, there remains
the hard problems of actually synthesizing optimal and near-optimal match-
ing multiports.
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7.2 What are the optimal multiport matching circuits?

Figures 17–21 show near-optimal matching performance of the lumped, loss-
less 4-ports. Consequently, the extraction of a circuit from these near-optimal
multiports is a practical problem of synthesis. One approach is the partial-
fraction or Foster expansion. Although the Foster expansion does produce
a multiport circuit, these circuits are not practical because they are infested
with transforms and gyrators—the value of this approach is to demonstrate
feasibility [35]. Therefore, other approaches to extract a practical circuit
from these lumped, lossless 4-ports are credible lines of research. The payoff
from these considerations have immediate applications: antenna matching
[34], amplifier design, and circulator optimization [45].

Specific to the three-wire antenna, the multiports need only a few lumped
elements to get a good match. In particular, the multiport of Figure 21 has
no lumped elements. Its associated scattering matrix is constant and listed
in Section 5. Decompositions of this constant scattering matrix may reveal
the basic connections between the ports [28, Section 7-2] or relate to the
decoupling algorithms of Volmer [37].

7.3 How effective is decoupling?

Figure 1 illustrates the decoupling algorithm [37]. The idea is excellent—use
the eigenvectors of the load’s scattering matrix to decouple the multiport
load into a collection of single-port loads. The key word in the question is
“effective” because problems exist with synthesizing the decoupling circuit
over wide frequency band. The basic idea starts with the observation that if
SL is an N -port that diagonalizes as

Λ = diag(λ1, λ2, . . . , λN ) = UT SLU,

where U is an N ×N unitary matrix, the 2N -multiport

SU =

[
0 UT

U 0

]
,

is both lossless and decouples the load in cascade:

Λ = F(SU , SL) = UTSLU.

The technical point of this technique is to synthesize the decoupler. Volmer’s
approach uses the 2-port directional couplers to synthesize SU similar to the
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way Givens rotations can diagonalize a matrix. This decoupling technique
is found in other multiport applications. For example, Czawka [10] offers
broadband microstrip uncouplers for multiport complex loads. Closely allied
with this SIMO design is a six-channel wideband power divider by Czawka
[11]. Jarmasz and Martens [24] apply a variant of this decoupling approach
to wave digital filters. Finally, Cameron and Yu [6] offer several multiplexer
topologies that can be applied to decoupling design. For example, a wideband
decoupler may be obtained by channelizing several narrowband decouplers
across the frequency band.

7.4 What are the multiport ladder circuits?

The lossless ladders are basic to 2-port matching. Each ladder’s stage com-
monly consists of a series or shunt element. The stages are cascaded to
make a ladder of specified degree. By increasing the degree of the ladder,
the matching performance of the ladder’s topology (low-pass, high-pass) as
a function of degree can be benchmarked against the H∞ bounds [1]. There-
fore, generalization of these 2-port ladders to multiport ladders is a credible
research topic with immediate and practical payoffs. As illustrated in Fig-
ure 29, one multiport generalization uses a stage consisting of shunts between
ports [31], [8]. Just as Fujisawa obtained deep results on characterizing the
mid-series and mid-shunt ladders [4], and as Fialkow pushed this program to
parallel ladders [16], an analogous multiport ladder program that builds on
these classic results awaits the determined researcher.

Figure 29: Shunts between ports.
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7.5 How critical is multiport matching for MIMO?

Figure 30 illustrates multiport matching in Multiple-Input Multiple-Output
(MIMO) systems. Although maximum power transfer is the standard match-
ing objective, MIMO system performance may be enhanced more by decou-
pling the antenna rather than power matching.

Figure 30: MIMO matching networks [25] c© IEEE 2006.

Fei, Fan, and Thompson offer a “multi-handed” discussion of MIMO
matching [17]:

. . . integration of MIMO technique into compact devices is re-
stricted if the antenna spacing is below half a wavelength. This
because strong mutual coupling (MC) between closely spaced an-
tenna elements results in changes in antenna patterns (antenna
correlation) and loss of antenna efficiency . . .MC is claimed as
a detriment to MIMO systems. However, MC can also be a
positive factor to increase the MIMO performance under some
circumstances.

These contrapuntal arguments were addressed by Wallace and Jensen
[39] showing MIMO capacity matching is optimized by conjugate matching.
However, Fei, Fan, and Thompson also observe that [17]:

. . . it is not feasible to integrate this solution [conjugate-match]
into MIMO systems as multi-loads has to be introduced to each

35



receive port . . . Although the design of multiport-conjugate match-
ing network has been reported in . . . the authors do not know of
any experimental results being presented in the literature. As a
result, the single-port match is still an attractive if suboptimal
solution . . . .

The upshot is that single-port matching is a credible benchmark for proposed
multiport matching—any MIMO matching scheme must beat this subopti-
mal performance. The upper bound for MIMO matching is the conjugate
matching [39]. Consequently, there are excellent multiport design opportu-
nities in wideband MIMO. Finally, other multiport design issues arise when
transmit and receive technologies are integrated into small systems. Quoting
from Morris and Jensen [26]:

As adoption of MIMO technology increases, there will be in-
creased desire to integrate multiple receiver front ends on a single
chip, particularly for mobile equipment. As this integration oc-
curs, circuit level signal coupling will increase, potentially leading
to altered signal correlation characteristics and signal-to-noise ra-
tio (SNR) at the front end amplifier outputs.

Figure 31 shows a multiport embedded in an active MIMO system. Mor-
ris and Jensen show that multiport matching can reduce the electromagnetic
signal coupling in the radio receiver front end. Because the amplifiers will in-
troduce gain, noise, and stability problems, scalar-valued multiport optimiza-
tion turns into vector-valued multiport optimization and the computation of
the associated Pareto fronts.

Figure 31: MIMO receiver and matching network [26] c© IEEE 2005.
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7.6 Multiport Antenna System Optimization

Up to this last example, multiport matching has been focused on matching
the 3-port load as a black box rather than as an antenna. This subsection
considers the performance of the antenna system both “in the wires” and
“over-the-air.” That is, the matching multiport and the antenna’s geometry
are simultaneously twiddled to optimize system performance. For example,
Czawka and Garbaruk [12] offer a design framework to control the radiation
pattern from a multiport antenna by using a lossless multiport to control
phase of the feeds. A fast and generalized antenna code is critical to the
optimization of such an antenna system [7].

Figure 32 illustrates such a system optimization and blurs the distinction
between the matching circuit and the antenna. The antenna is still the
three-wire antenna. The antenna system is driven by wire #1 fed through
its matching 2-port S1. The short wire #2 and the long wire #3 are fed
by electromagnetic coupling. These two wires are loaded at their feed points
with 2-ports with scattering matrices S2 and S3. The design variables are the
three 2-ports—and the parameters of the wires: their lengths and spacings.
The design problem is to simultaneously match while sweeping over this
family of three-wire antennas.

Figure 32: Antenna system (single feed, port loading).

One optimization problem is solved by computing a Pareto front that
shows the tradeoff between gain and bandwidth. A more ambitious opti-
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mization problem is solved by computing a Pareto surface that shows the
tradeoffs between gain, bandwidth, and volume. If a radiation pattern is
also specified, the optimization problem is solved by computing the Pareto
surface that shows the tradeoffs between gain, bandwidth, and volume—
under the constraint that the resulting radiation pattern is within tolerance.
A handy “rule-of-thumb” in optimization theory is that any constraint is
really an objective function. Consequently, the final antenna design prob-
lem is computation of the Pareto surface showing the tradeoffs between gain,
bandwidth, volume, and quality of pattern match. Clearly, a fast multi-
physics code is needed to handle the lumped elements in the circuit and the
distributed electromagnetic performance of the antenna.
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A Characteristic Modes of the Three-Wire

Antenna

Because the coupling between the ports of the three-wire antenna gives its
wideband performance, the discussion of Section 3 is augmented by this ap-
pendix. The characteristic modes reveal the resonances and couplings of the
three wires. Figure A-1 re-plots the three wires for the reader’s convenience.

Figure A-1: Center-fed Dipoles: 1/4, 1/2, and 1 meter in length

Figure A-2 displays the impedance matrix determined by the segmenting
of the wires as listed in Table 3. The matrix breaks into three blocks cor-
responding to the three wires. The blocks on the main diagonal show the
coupling between the segments on a wire. The off-diagonal blocks show the
impedance coupling between the wires. Write the impedance matrix using
its real and imaginary parts:

Z = R + jX.

The resistance and reactance are real matrices, with R ≥ 0. Make the as-
sumption that the segmentation is sufficiently homogenous so that these real
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Figure A-2: Impedance matrix at 150 MHz.

matrices are also symmetric. The characteristic modes are the eigenvalues of
[19]:

XJ = RJΛ; Λ = diag(λ1, . . . , λN ),

where J is matrix of eigencurrents. Because X and R are real and symmetric,
Λ must be real. If R is invertible (R > 0), replace J = R−1/2W to get

R1/2XR−1/2W = WΛ.
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This ordinary eigenvalue problem admits a solution W that is real and or-
thonormal: I = W TW . Consequently, the eigencurrents J are orthonormal
with respect to the resistance matrix:

JTRJ = I.

A physical meaning of the characteristic modes follows from the impedance
matrix

ZJ = RJ(I + jΛ).

Resonance is said to occur when a characteristic mode vanishes [23]: λn = 0.
If λn > 0, its eigencurrent jn is said to make an inductive contribution. If λn <
0, its eigencurrent jn is said to make a capacitive contribution. Properties of
the eigencurrents are offered by Austin and Murray [3]:

An important property of these current modes is that they are
orthogonal over the surface, as are the fields that they produce
over the sphere at infinity, and so they radiate power indepen-
dently of one another. The magnitude of λn denotes the relative
significance of each mode, in terms of the ratio of stored energy to
radiated power. The closer |λn| is to zero, and hence to resonance,
the more substantial is its contribution to the overall radiation.

If these modes can be individually excited by an adroit placement of feed
points, design of antennas and shaping of radiated fields follows from the
orthogonality of the eigencurrents. The following plots illustrate these con-
cepts.

Figure A-3 plots the two most radiating eigencurrents at 150 MHz. Be-
cause the wire segments are the same lengths and the indices run along the
wires, the plot shows the current along the wires. The half-wave resonance
of the long wire with a characteristic mode of λ = 0.61187 (blue curve).
Most of the current resides on the long wire but there is current on both the
shorter wires. Comparison with Figure 6 reveals 150 MHz is sightly above
resonance of the long wire. Consequently, the characteristic mode is slightly
positive rather than zero. If a feed point is placed at the center of the long
wire, this mode could be excited at 150 MHz and radiate most of its power.
Figure A-3 also plots the next most radiative eigencurrent (λ = −143) that
corresponds to the full-wave resonance of the long wire. If feed points are
placed at the extrema of this eigencurrent, this mode will be excited (with
opposite phasing) at 150 MHz. However, the radiation from this eigencurrent
with λ = −143 is relatively small.
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Figure A-3: Eigencurrents at 150 MHz.
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Figure A-4 plots two significant eigencurrents at 300 MHz. The medium-
length wire does show half-wave resonance (λ = 0.65159) and shows coupling
into the other wires. However, the most efficient resonance (λ = 0.47758)
is the full-wave resonance of the long wire (blue line). Thus, 300 MHz is
slightly above resonance for both the long and medium-length wires. A feed
point placed at the center of the medium-length wire should excite this mode.
Two feed points on the long wire and oppositely phased should drive the full-
wave resonance. Weighting and phasing these two eigencurrents allows some
beamforming in the far field.

Figure A-4: Eigencurrents at 300 MHz.
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Figure A-5 plots three significant eigencurrents to 600 MHz: the half
wave on the short wire, the full wave on medium-length wire, and the two
waves on the long wire. This plot reveals some interesting feed-point design
problems with respect to exciting individual modes. A single feed centered
on the short wire should only excite its half wave (λ = 0.45367). Two feeds
on the medium-length wire (λ = 0.44225) produce the full-wave on that
wire and two waves on the long wire. Likewise, four feeds on the long wire
should excite the two-wave current (λ = 0.21943). Thus, a total of seven
feeds should allow control of these three eigencurrents and the associated
orthogonal decomposition of the far field.

Figure A-5: Eigencurrents at 600 MHz.
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Figure A-6 shows significant eigencurrents at 450 MHz. The plot reveals
that the three-wire antenna is radiating from the long wire (λ = 0.36559)
with 3/2 wave. The extrema of this wave should set the location of the feeds
on the long wire. However, the λ values of the other eigencurrents show
radiation at 450 MHz could be accomplished from several locations.

Figure A-6: Eigencurrents at 450 MHz.

In summary, these plots demonstrate that the three-wire antenna has sev-
eral radiation modes, shows the coupling between the wires, locates credible
feed points and phasing for this antenna system, Thus, the design insight
provided by the characteristic modes by locating these feed points and phas-
ing is orders-of-magnitude more efficient that the “ant-like” combinatorial
algorithms that search all segments and phases for such control points. Fi-
nally, the design insight provided by the characteristic modes also point to
the 2-port loading led to Figure 32 and points to end-to-end loading with
low-pass filters for better performance at the lower frequencies.
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B Lumped, Lossless N-Ports

Let U+(N, d) denote the class of lumped, lossless N -ports of degree d. Phys-
ically, U+(N, d) represents all the N -ports that can be synthesized with at
most d lumped elements—inductors and capacitors—connected only by wires,
transformers, and gyrators. Excellent wideband matching to the three-wire
antenna was obtained from the 4-ports with degree d ≥ 3. This appendix
reviews U+(N, d) to analyze these matching results.

Mathematically, U+(N, d) consists of all N ×N scattering matrices S(p)
that are real, rational, analytic and bounded on the open right half of the
complex plane C+, unitary on the imaginary axis

S(jω)HS(jω) = IN ,

and have Smith-McMillan degree

degSM[S(p)] ≤ d.

The initial results on the Belevitch’s Theorem characterizes the scattering
matrices for the lumped, lossless 2-ports of U+(2, d).

A lumped, passive 2-port contains the lumped elements—inductors, ca-
pacitors, resistors—and the means of connections—wires, transformers, and
gyrators. The corresponding scattering matrix [28], [42]

S(p) =

[
S11(p) S12(p)
S21(p) S22(p)

]

is a rational function that is analytic on the open right half plane C+, satisfies
the real condition

S(p) = S(p) (p ∈ C+),

and is a contraction

S(p)HS(p) ≤
[

1 0
0 1

]
(p ∈ C+).

A lumped, lossless 2-port omits the resistors. As a consequence, its scat-
tering matrix S(p) is a real rational function that is analytic on C+, a con-
traction on C+, and unitary on the boundary of C+:

S(jω)HS(jω) =

[
1 0
0 1

]
.
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A lumped, passive, reciprocal 2-port omits the gyrators. The associated
scattering matrix S(p) is a real rational function that is analytic on C+, and
a contraction on C+ that is also symmetric:

S(p) = S(p)T (p ∈ C+).

Belevitch’s Theorem asserts the existence of a scattering matrix S(p) for each
2-port and obtains the converse of these statements.

Belevitch’s Theorem [44], [4, pages 83–86] A lumped, lossless
2-port admits a scattering matrix

S(p) =
1

g(p)

[
h(p) f(p)
εf∗(p) −εh∗(p)

]
,

where h∗(p) = h(−p) and (f, g, h) is a Belevitch triple:

B-1 f(p), g(p), and h(p) are real polynomials; ε = ±1,

B-2 g(p) is strict Hurwitz (no zeros in the closed right half plane).

B-3 g∗(p)g(p) = f∗(p)f(p) + h∗(p)h(p) for all p ∈ C.

Conversely, any such S(p) is the scattering matrix for some lumped,
lossless 2-port. Moreover, if the 2-port is reciprocal

S(p) =
1

g(p)

[
h(p) f(p)
f(p) −εh∗(p)

]
,

where either f(p) is even and ε = −1, or f(p) is odd and ε =
1. Conversely, any such S(p) is the scattering matrix for some
lumped, lossless, reciprocal 2-port.

The number of reactive lumped elements—the inductors and capacitors—
is linked to the degree of the 2-port.

Definition 1 [42, page 91]: Let the K distinct poles of S(p) be denoted as
pk. Let deg(S(p); pk) denote the largest order to which p = pk appears in any
minor of S(p). The Smith-McMillan degree of S(p) is

degSM[S(p)] :=
K∑

k=1

deg(S(p); pk).
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Belevitch’s Theorem characterizes U+(2, d). The scattering matrices in
U+(2, d) constitute the “state-space” curve in Figure 12. Although Bele-
vitch’s Theorem admits some direct extensions [27], the state-space repre-
sentation is more useful for N -ports. Figure B-1 illustrates the state-space
representation of a passive, lumped N -port.

Figure B-1: State-space representation of a passive, lumped N -port.

The figure shows that by pulling the d reactive elements and the r lossy
elements into the augmented load SL(p), what is left is an multiport consisting
of the wires, transformers, and gyrators with scattering matrix Sa. Because
Sa represents a multiport containing only wires, transformers, and gyrators,
Sa is a constant matrix. Moreover, because the multiport containing only
wires, transformers, and gyrators is lossless, Sa is a constant unitary matrix.

The N -port is obtained by looking into Ports 1, 2, . . . , N of the aug-
mented scattering matrix Sa while its remaining ports are terminated in the
augmented load SL(p). That is, S(p) is the image of the augmented load
viewed through the augmented scattering matrix Sa. Theorem 1 gives the
precise statement of this state-space representation.
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Theorem 1 (State-Space [42, pages 90–93]) Every lumped, passive, ca-
sual, time-invariant N-port admits a scattering matrix S(p) and conversely.
If S(p) has Smith-McMillan degree d and normal rank r, defined as [42, page
91]:

r[S(p)] := rank[IN − S(−p)TS(p)],

S(p) admits the state-space representation:

S(p) := Sa,11 + Sa,12SL(p)(Id+r − Sa,22SL(p))−1Sa,21,

where the augmented load is

SL(p) =




q × INL
0 0

0 −q × INC
0

0 0 0 × Ir


 ,

(
q =

p − 1

p + 1

)
,

and NL + NC = d. The augmented scattering matrix is

Sa =

[
Sa,11 Sa,12

Sa,21 Sa,22

]
N

d + r

N d + r

,

which is a constant, real, orthogonal matrix. If the N-port is lossless, then
r = 0. If the N-port is reciprocal, then Sa is symmetric, ST

a = Sa.

The power of the state-space representation is that the scattering matrix
encodes the structure of the N -port [42, page 91], [28]:

• Any N -port that has S(p) as its scattering matrix contains at least
r[S(p)] resistors. Moreover, of all the N -ports that have S(p) as their
scattering matrix, at least one has exactly r[S(p)] resistors.

• Let NL and NC denote the number of inductors and capacitors in an
N -port. For every N -port with scattering matrix S(p), NL + NC ≥
degSM[S(p)]. Moreover, of all the N -ports that have S(p) as their scat-
tering matrix, at least one N -port has exactly this many inductors and
capacitors.

• The number of gyrators in any N -port must always exceed the gyrator
rank:

g[S(p)] :=
1

2
rank[S(p) − S(p)T ].
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Oono [30] established that exactly g[S(p)] gyrators are needed to syn-
thesize the N -port. Consequently, when g[S(p)] = 0 or when S(p) is
symmetric, the N -port is reciprocal and contains no gyrators. Phase 2
of this series will report that excellent wideband matching is still possi-
ble using reciprocal multiports. Specifically, good matching is obtained
using only capacitors—no inductors and no gyrators.

• Anderson [2] obtains the general result regarding N -port synthesis: an
N -port synthesis is possible with degSM[S(p)] reactive elements and
g[S(p)] gyrators.

Section 5 applies this state-space representation for wideband matching of
the three-wire antenna by specializing to the U+(4, d).
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